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FINAL REPORT ON AFOSR GRANT 77-3358

6/1/78 to 5/31/79

Charles L. Dolph

Du)ing the past year definitive answers were achieved for several

questions raised in the pruposal 3f February 1978. These include:

1. An examination of the relationship between the scattering matrix

(the Fourier transform of the scattering operator) and the integral equations

used in the Singularity Expansion Method (SEM) established that only the com-

plex poles off the axis a'e intrinsically associated with the scatterer. While

it h2s been known in speciul cases that those on the axis do not contribute to

the field (e.g. Dolph, "ThE integral equation method in scattering theory",

Problems in Analysis, Ed. R. C. Gunning, Princeton University Press, 1970.

An AFOSR Symposium),' this appears to be the first time this relationship has

been clearlv exhibited. Since the scattering matrix can be shown to be analytic

in a half-plane containing the axis, any integral equation should exhibit the

same properties for this region. Those of SEM fail to do so but other integral

equations which do can be given in all cases.

This result raises the interesting and as yet open question as to

whether the poles of the integral equation of SEM in addition to yielding poles

not intrinsic to the body might yield only a subset of the complex poles of the

scattering matrix. No examples where this occurs are yet known but there is no

proof that it cannot happen. In contrast, if an integral equation using the

Green's function in contrast to the free space Green's function is used, A. G.
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Ramm has recently shown that there is a one-to-one correspondence between the

poles of this Green's function and the zeros of the eigenvalues as they are

used in the Eigenmode Expansion theory. This will be elaborated on in future

work.

2. The relationship between the eigenvalues of the integral equations of

SEM and the complex eigenvalues of the associated partial differential equations

-- whether scalar or vector. Tn -Prticular, tHe integral Pm-t*4nis of qFM h~vp

at most two eigenvalues + and these are functions of the at-most-denumerable

number of complex eigenvalues of the associated differential equations. -

3. These results were first presented in an invited address at a special

session on Integral Equations at the annual meeting of the American Mathematical

Society held in Biloxi, Mississippi, January 24-28, 1979. An abstract of this

talk is attache,.

More-.,er, because of the unfamiliarity of many SEM workers with the

mathematics involved, several attempts were made to write an account suitable

for the IEEE Transactions on Antennas and Propagation. C. E. Baum and others

felt that the first two drafts were too detailed and technical, so that a third

attempt, with many simplifications, was prepared. The resulting uaper, joint

with S. K. Cho of the Radiation Laboratory of the University of Michigan, has

been submitted to the above journal. It is entitled "On the relationship be-

tween the singularity expansion method and the mathematical theory of scattering".

While a copy of this paper in its submitted form is attached it is

doubtful that the paper will appear exactly as here. Correspondence with C. E.

Baum and one of the referees, Professor Wilson Pierson of the University of

iI IAvai ad/or



Kentucky seem to indicate that cert3in sections will still have to be expanded.

Knowledge of this paper's existence seems quite wide spread in liew of the num-

ber of requests that have been received for preprints from various SEM workers.

4. As indicat- in the 1979 proposal it was felt that the theory of non-

self-adjoint operators in Hilbert space-would have significant implications for

that part of the electrical engineering formalism known as the Eigenmode Expan-

sion Method (EEM) particularly in relevance to the use of this formalism in de-

veloping equivalent circuits.

A survey of the Russian literature revealed that a significant start

in this direction had been made in both the scalar and vector cases by several

Russian workers. In particular, papers by A. G. Ramm and M. S. Agranovic in

the scalar case, made it evident a forteriori that the EEM formalism based on

the impedance irtegral equation would not be correct in general and thus the

work on equivalent circuits would have to be critically examined.

In this connection C. L. Dolph, with considerable help from V. Komkov,

reviewed the book: The Generalized Methods of Eigenvibrations in the Theory of

Diffraction byVoitovic, Kacenelenbaum and Sivov, as well as the mathematical

appendix Spectral Properties of Diffraction Problems by Agranovic. An unedited

copy of this review is attached but it is expected that the final version will

appear in the September or October issue of Mathematical Reviews for this year.

Because of its importance two attempts at translation are underway.

A machine translation, arranged by Dr. R. Buchal of AFOSR, and an American Mathe-

matical Society translation, arranged by the author and the editors of Mathema-

tical Reviews.

-3-



As the attached abstract indicates, much of the above material was

presented in a talk by C. L. Dolph at the International Symposium on Recent

Developments in Classical Wave Scattering held at Ohio State University June

25-27, 1979.

A manuscript by C. L. Dolph, V. Komkov and R. A. Scott entitled "A

Critique of the Singularity Expansion and Eigenmode Expansion Method" will ap-

pear in book form in the conference proceedings to be published by Pergamon Press.

A copy of this manuscript is attached. As this paper contains the zn=lvant Fnglish

translations of the Russian literature, copies of its bibliography were also

distributed (see attached copy). Additional copies of this bibliography will be

furnished on reqiea3t.

5. With the aid of Dr. R. Buchal cf AFOSR and Professor F. Gehring and

Lee Zukowski of the Mathematics Department of the University of Michigan and

many others, including the author, A. G. Ramm, formerly of the University of

Leningrad, was successfully brought to the University of Michigan. Since his

arrival on June 5th, 1979, he and the authors have been actively planning and

beginning to implement further research in the areas under discussion. A de-

tailed plan will be available shortly. A list of publications and curriculum

vitae of A. G. Ramm is attached.

-4-



Abstract of Talk at American Mathematical Society Meeting

Biloxi, Mississippi, January 24-27, 1979

C.L. DolphUniveraity of hichig ,nAnn ArborrMichigan 48104.Predholo
integral equatio:.a,scattei,'ing theory, and tihe sinnularity expansiox

Since 1971 Sr-21 has been extensively used in electromagnetic theory e

,,'ident from the review article by C.L. Baumt Emerging technology for trani

d ;,road band analysis and synthesis of antennas and scatterers," Froc. I.

( , 1976, pi...159 8-1616. The -Vredholm intujral equations und their complex

ngulrities used in SkN wiLl be discussed and SLf4 will be interpreted in

rrgs of mather.atical scatterinr, theory.
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ON THE RELATIONSHIP BETWEEN THE SINGULARITY EXPANSION

METHOD AND THE MATHEMATICAL THEORY OF SCATTERING

C. L. Dolph
Mathematics Department

The University of Michigan

S. K. Cho
Radiation Laboratory

The University of Michigan

*Partially supported by AFOSR-773358
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1. Introduction

The singularity expansion method (SEM) and the mathematical

theory of scattering have been extensively developed independently

of each other during the last decade or so. To our knowledge the

relationship between them has not been discussed. In this paper

the implications for SEM of the mathematical scattering theory

will be explored. As a result some important conclusions of SEM

will be seen to also follow from scattering theory and, at the

same time, certain gaps between the two approaches will appear.

The SEM was introduced by C. Baum in 1971 [1] as a technique

for solving transient electromagnetic scattering from bodies of

finite extent. Since then, as reference to [2], .[3] and [4]

indicate, not only has it been widely used, but an extensive

formalism has been developed for it. Succinctly, the SEM is

a generalization of well-known technique of linear circuit theory

in which sin3uularities of a transfer function in the complex

frequency plane are used to determine the transient response

by the Heaviside expansion theoreU. Moe deLails of the pro-

cedures of the SEM will be given in Section 2.

Miathematical scattering theory as used here originates in

the work of Lax and Phillips [13, 14, 151 for the scalar case

and its generalization by Schmidt [23, 24' for the electromagnetic

case. An independent development of the theory based upon

integral equations similar to those employed in the SEM theory

is due to Shenk and Thoe 1251, [26], and [271 in the scalar case

and to Pyz'janov [19], [201, and [21] in tihe electromagnetic case.

.. . ....-- mi mamm mmm m mim m7



The relevant parts of this theory will be sketched in Section 3

as well as its implications for SEM. In Section 4 additional

aspects of the SEM formalism will be commented upon and some

questions raised as to its interpretation.

2. The SEM Formalism and a Mathematical Interpretation

In view of several descriptions of the SEM given in the

reference already quoted, only a very brief sketch of the

relevant formalism will be given here. The discussion will

further be limited to the electromagnetic case for convex per-

fectly conducting bodies.

Maxwell's equations are first subjected to a two-sided

Laplace transformation with respect to the time and the initial

value problem replaced by a time-inclependen t boundary value

problem for a reduced wave equation for the electric or magnetic

field subject to the corresponding boundary condition for perfoct

conductivity and a vector radiation condition. A representation

for the scattered field is then sought in the form of an integral

representation. Application of the boundary condiLion yields

an integral equation (or in some instances an integral-differential

equation) whose kernel is given in terms of some free space

Green's function or dyadic. The unknnwn in the integral equation

is the response (often a current density on the scatterer) induced

by the incident wave. The so-called natural frequencies

{s n} are the values of s for which the corresponding

homogeneous integral equation has non-trivial solutions. At

-8-
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such a value of s , the inverse to the integral equation will

not exist and the values of s will be poles of the inverse.

The res,," '-.ing residue series which leads to coupling coefficients

will not be discussed here. In actual practice the homogeneous

integral equation is replaced by a matrix equation by some finite

approximation technique such as that of the method of moments.

The poles are then sought approximately as the zeros of the

determinant of this matrix.

The formal procedure, leaving aside the relation between the

solutions of the integral equation and the matrix equation, has

been justified mathematically in only a few cases. The most

comlete treatm-ent is due to Marin [171. For a perfectly

conduci nc body he used the Franz H-field representation and

treated the resulting magnetic field integral equation (MFIE)

for thei.. current density; namely,

(I - ? ).j_ -: j - 2 F. n x (VG x J)(I j 2 _(n x H C)

Here n is ta1 outward bound unit norm.] to the scattercr and

G is scalar free soace Green function

e-G =-

Solution,; are sought in the Hilbert space of elements J that

are tangent to F and square integrable on P where F is

assurne ";uf f Lci entIy srmoot h. pecifically tlh_ intgural equation

- 9 -
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( -2 inc
(I - 4L )J = 2(1 + 2L).(n x in

is shown to be Fredholm and treated by the method of Carleman.

The operators (I - 2L) and (I + 2L) are shown to have

inverses for the same values of s and consequently these

inverses exist whenever this last integral equation has an inverse.

From this it follows that (I - 2L) has a pole at s = s n

whenever the homogeneous integral equation (I - 2L)-j= 0

has a non-trivial solution at s = sn

The poles so determined lie in the union of two sets. One

set consists of poles corresponding to interior resonances. These

arc purely imaginary and their occurrerice is due to the method.

They do not contribute to the scattered field and hence are not

intrinsic to the scattering problem. The other set consists of

Doles correspn:,nding to exterior resonances and they arc not

purely imac' nary. They are in fact eigenvalues of the vector

wave equation

2s

V X V X if + H 0
-n -_n

C

for the exterior scattering problem.

The laim that these poles (exterior resonances) are intrinsic to

the scattering problem will be further substantiated by their

interpretation as poles of the scattering matrix in Section 3.

Marin's conclusion can also be deduced directly from the

analytic Fredholm theorem. In its general form the theorem is

due to Stcinbe,]j [281 who established it for a general B3nnach

space.

- 10-
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Recall that a Banach space B is a linear space in which

a "distance" is defined b., a norm, usually denoted by [ Il

and it is complete in the sense that every Cauchy sequence

has a limit (in norm) in the space. In general there is no

inner product. Let J(B) be the set of bounded operators

on B A norm in t(B) can be defined for a linear operator

A by

IAfl = sup _A
;f xeB li XI

kn operator A in t(B) is called compact 'or completely

continuou.s) i z and only if fow every bounded sequence {x n }n

in B , {Tx n} has- a cor 1 ;.erq,__nt subsequenc, in B

A family of operators 1'(s) depending upon s is called

an ana'yLic family in the neighborhood of s, if

T(s) Tn ( s - s ) n

0

where corvergence s in the operator norm and where T is in

X (B)

The theorem can be stated as follows:

If T(s) is an analytic family of compact operators for

s E K , an ope-: connected subset of the complex plane, then

either (I - T(s)) is nowhere invertible in K or ((I - T(s))

is meromorphic in K At a pole, the equation . - T(s 0 )1 = 0

has a non-zero solution in B

- ii -
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If B is a separable Hilbert space the inner product can

be used to express the residue in terms of operators of finite

rank. That is, for each pole there will exist an N and two

sets of linearly independent functions i

such that the corresponding residue can be expressed as

N

1 k

where (f,g) has been used for the inner product. A proof o-

this can be found in Reed and Simon [22).

It may be shown directly, or Marin's argument can be used

to conclude, that the MFIE is a Fredholm integral equation of the

second kind having an inLegral operator which is compact. It

is also not difficult to verify that the MFIE yields a family

of operators analytic in s . Marin's conclusion then follows

from the Hi _et space analytic Fredholm theorem.

However, since in most SEM applications it is necessary to

resort to numerical methods, it is mrre appropriate to seek

solutions in the space of continuous functions. Such a space here

would consist of the Banach space of all continuous J tangent to

r when the norm is taken to be

_111 max 1!1Ix)t.

xe

The Fredhom operator of the MFIE will still be a compact analytic

family in s and consequently the same conclusions about the

natural frequencies will follow.

- 12 -



Unlike the papers by Marin other SEM papers are difficult to

interpret mathematically since neither the properties of the

integral equations nor the spaces in which solutions are sought

are specified. Some papers also employ integral equations of the

first kind which, it is claimed, lead to approximate solutions

which are easier to handle numerically. It should, however,

be recognized that integral equations of the first kind cannot,

unless of certain special types like Wiener-Hopf, be used to

establish existence and uniqueness properties. Integral equations

of the first kind in whatever space their solutions are sought,

are not a well set problem in the sense of Hadamard so that

some method of regularization such as one of the methods of

Tihonov [30] should ne used. While such methods have been

used in other electromagnetic problems [cf. (8)] they do not

appear to have occured in connection with SEN. It should also

be emphasized that for scatterers of finite extent, the

Franz E-field representation will not

lead to an integral equation, no matter how smooth the boundary

fields are assumed to be.

In view of this the subsequent interpretation in terms of

scattering theory will be limited to those problems involving

Fredholm equations of the second kind.

3. The scattering operator and scattering matrix.

Several considerations have influenced our decision to

restrict further discussion to scalar rather than vector wave

- 13 -



equations. Not only are all the essential ideas present in this

simpler case but all proofs of the assertions we will make are

readily available. This is, unfortunately, not true in the

other case. For example the theorems about the scattering operator

and the representation of the scattering matrix are stated without

proof by Schmidt [23,24]. IHe indicates that they follow directly

from the corresponding results contained in the book by Lax-Phillips

[13]. And while this is true, we do not expect our readers to have

the necessary familiarity with the Lax-Phillips theory to find this

easy to do. A reference to Beale's unpublished thesis 15] , where

many of these details are carried out, will soon convince one of

the difficulties involved. Further as noted in the reviews of the

papers by Pyz'janov [19], [20], [21],many open questions concerning

the spaces and operators used by this author are also not specified

and thus these papers are open to the same criticism as most of the

papers in SE',.

Fortunately a straight forward extension of the Shenk-Thoe

theory could be carried out for s 7 0 This would involve

replacing the representation for the scalar field developed by

Werner [31] and used by them by Werner's subsequent representation

of scattered electric field as given in [321. The Shenk-Thoe

procedure could then be followed step-by-step and the con-

clusions reached by Schmidt obtained in this way just as the

conclusions of the Lax-Phillips theory can be reached by the

Shenk-Thoe method in the scalar case.

While Laplace transformations in time have so far been used,

henceforth they will be replaced by an equivalent Fourier transform.

- 14 -



The time convention used will be that of most papers in physics

and under it, the upper half plane replaces the right-hand half

plane as the domain of analyticity. This is also the convention

used by Shenk-Thoe and its use allows one to state spectral

properties in the usual form. It amounts to introducing k is

It is not that of Lax-Phillips and Schmidt where "i" would

be "-i". Thus outgoing waves here would be incoming-

in their sense and vice-versa.

Let Q be an unbounded free space (Q CE n , n =.2,3)

exterior to a sufficiently smooth convex body with the surface r

The time-dependent acoustic scattering problem seeks the solution

for the wave equation for the scattered field us

(A 2 ) us (r,t) = 0 , r e Q , t > 0
c2 tc

subject to th- initial conditions

us (r,0) f1 (F)

t =0 , r e n2 (3.1)
d uS (r,O) f (r)

and one of the following three boundary conditions for

t > 0:

Dirichlet: us (- t) gl(r01 t)

Neumann: n (r0 ' ' r 0

0 0

Robin: + a) (r 0 ,t) = 3 (r 0 ,t)

- 15-
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where - n0 -V0 , nO denoting the unit normal vector at

the observation point on directed into n

In the scattering theory, one views these problems as

perturbations of the free space, or unperturbed problem (with-

out the scattering obstacle) such that, for large time ItI,

the perturbed (or scattered) solutions become asymptotically

equal to the free space solutions. The scattering operators

which are thought to contain all the observable information about

the nature of the scatterers represent measures of these

perturbations. Let U(t) denote operators which relate the

states at t = 0 to those at t > 0 in the scattering problems.

Similarly, let U0(t) denote the corresponding operators in the

free space problems. If f = (fl,f 2 ) denotes the initial data,

then U(t)f solves a scattering problem in the sense that it

represents the state at time t > 0 , evolved from the initial

state. Since the scattered solution is assumed to be asymp-

totically equal in large ItJ to the free space solution, one

expects that there exist initial states, f0  ' in the fre-space

unperturbed problem such that U0 (t) f 0 + are asymptotically

indistinguishable from U(t)f as t + -. This is made precise

by introducing an appropriate Hilbert space with the energy norm

lfl = I 11f 1 12 + If212Idv

where f and f2 are compactly supported. For this space,

the operators U(t)U 0(t) are one-parameter groups and unitary.

The asymptotic behaviors stated above are now expressed as

- 16 -
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I1u(t)f - U0 t) f0 -11 '0 , as t- ,

JU(t)f - U0 t)fo0 
+ I -0 , as t

Since U(t), Uo (t) are unitary and form a group, the above

expressions may be written as

IIU(-t) V(t)f - UO (t) f 0 I1 1 0, as t -* -;

or

hlf - U(-t)Uo(t)fo+hI + 0 , as t - +110

The operators

W+ (t) - lim U(-t)U0 (t)

exist, and are called the wave operators as is well known in

the physics. ;,. (t) , for instance, compares the asymptotic

free space so. tion U0 (t)f0 - with the asymptotic scattered

solution U(t) fO+  See the Figure 1 below.

fo-

Figure 1.f

f0 +  +

The map

: f- F--> f 0 + (3.2)

-17-



Figure :;1

f W+

-18-



is called the scattering operator. That such operators exist

and are unitary in the Hilbert space can be established. As

evident from Figure 1,

-= 11+-1W

Let denote the n-dimensional (n = 2,3) Fourier

transformation defined by

E(f) H f(k) = (2)-n/2 f f(r) eikr dr (3.3)

The scattering matrix is then defined by

S (3.4)

Next, consider an exterior homogeneous boundary value

problem

(A + k ) +() 0 , r e 9.
S(3.5)

y[¢+( r = o - e r.-

Here y is written for the Dirichlet, Neumann or Robin boundary

condition.

Then,

- ik-r
(r) = e- + V+(r,) (3.6)

are evidently the solutions of the problem. Although they are

not in L2 (Q) I +(r) are improper eigensolutions. °v+(r,k)

are the solutions of the boundary value problem

- 19 -
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(A + k 2 ) v +(r) 0, r e

(3.7)

y[v+ (ro k) + e ] = 0, r e r

v+ (v) is called an outgoing (incoming) diffracted plane

wave; +(r) are called distorted plane waves.

If a generalized transformation is defined by

+(f) lim (2) - 2  f f(r) +(rk)*dnr (3.8)

where QP = { Q C Ir < P1 for some sufficiently large 0

and where * denotes complex conjugate, then the scattering matrix

S takes a simple form

+

which is equivalent to

S f f.S

Tf- the scattering matrix maps p_ (r,k) into + . This

form is particularly convenient for time-independent scattering

theory. Since k will be continued to the complex plane, it

is necessary to replace the usual radiation condition by a

representation based on Green's formula. For v +(r,k) this

- 20 -



takes the following form: for outgoing waves associated with

the plus sign and incoming waves associated wiLh the minus sign,

- -) 8v(r, + --

V+ (r,rk) f [v, (r ,kG (kR) - G± (kR) -- v i (i',k)]dA' (3.9)

(1)
_ i k (n 2 2 ()

where G (kR) = (n-2)/2 H(2) (kR), n = 2,3
4 Tr (n-2)/2n2,

R = Ir-r'il r e r' e r

This representation implies that the corresponding integral

of the right-hand side taken over a large sphere tends to zero

as the radius of this sphere tends to infinity. It can be shown

that this in turn is equivalent to the usual radiation conditions

for k \ 0 and 0 < arg k <

For k real, r = jrj , = r/r , w = k/k, k = Iki , and for

rI >>JIt' on obtains the asymptotic form

+ikr
v+(Y,k) = v+(rg,kau)- (n-l)/2 [s+(O,k,o) + 0(i)] (3.10)

The functions s+ in this last formula are called radiation

patterns or transmission coefficients. In terms of them the

scattering matrix takes the form

S(k)h() = h(f) + (ik/2T) (n-l)/2 If h (w) s (-O,k,) *ds_

(3.11)

n-l n-l
for h(6) c L 2 (Sn), S being a surface of the unit ball

in n-dimensional space. The above integral operator is

compact for k > 0

- 21 -



This representation may be derived from the scattering operator

[26] or it may be verified by first postulating it and then

invoking some form of the radiation condition and Rellich's

uniqueness theorem, [13, 153.

The representation formulas for outgoing (incoming) waves

v+ imply that

s+,k) = i (k) f v(,, Tik -+ 2 v+ Y,) e e

(3.12)

+ ik v-6 .
-e n v+y(v,k, w) ]d

(n-l)

where n(k) (+ T n 2,3, k > 0

This relation establishes a one-to-one map between the

analytical properities of s+ and of v+ Since it can be

shown that s (-e,k,,,) s+(-9,k ,-j,) it follows that if the

solution v+ can be constructed and shown to have a meromorphic

continuation from the positive real axis to the entire complex

plane if n is odd and to the entire logarithmic Riemann

surface {k / 0 , -- < arg k < - if n is even , it will follow

that the same is true for the scattering matrix. It also follows

from the Shenk-Thoe theory that the scattering matrix is unitary

for each positive k

Shenk and Thoe construct the solution for v+ for a more

general problim ;n which surface r may have several components

and admit, a perhaps empty, decomposition as the union of

1 and r'2 " On r Robin boundary conditions are imposed

(a = 0 is allowed) while Dirichlet boundary conditions are

- 22-
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imposed on F 2  The scattered field is sought, following

Werner [313 , as a superposition of a single layer, a double

layer and a volume potential and the resulting system of Fredholm

integral equations of the second kind is shown to be uniquely

solvable for Im k > 0 in an appropriately constructed Banach

space. Steinberg's theorem is then invoked Ito establish the

analytic properties of the scattering matrix. This method,

while quite general, would not be useful for numerical computation

because of the presence of the volume potential and, to our

knowledge, it hat never been employed for this purpose.

In contrast, for the Dirichlet and Neumann problem alternate

reoresentations using a complex combination of single and double

layer :potentai:,- not only can be used to establish a 1-1 map

but is more useful for numerical calculations.

The . ;r esY;, : ons_ are duc to Brakhage and Werner [7] and

to Tois [ir!] cind take the form:

% , ) T iny (kR)] I (y)d y , (3.13a)
+ 9n Ty Y

v (r ) = [G+(kR' + iT -G+(kR)] ( () (3.13b)+ -n y

Hfere, q 1 for Rek > 0 and t - for Re k < 0 The

resulting integral equations for a plane wave incidence are

-~ (x) ±G2+f d + iTG+ ) (y)d ik 'x  (3.14a)

(() + 2 ( ( 2 e--- -
y" y

a rid

(7,+ 2c+ ( -ik-x
(X)- 2 -[ n 4 1T y d ; 2 n n y 2(3.141n' x x y Y x
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These equations have analytic compact integral operators

in the Banach space of continuous functions and possess a unique

solution for Im k > 0 and are meromorphic elicwhere. They
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therefore also provide a 1-i map between the transmission

coefficient, and the solutions to the reduced wave equation.

It should be noted, however, that because of the higher order

singularity in the Neumann problem it is necessary to use a

method of regularization to obtain these results. This is

carried out, follow'ng the method of Leis [16], in detail in

Kussmaul [121 where the cylinder problem is treated numerically.

The corresponding numerical treatment for the cylinder Dirichlet

problem is given by Greenspan and Werner [10).

If SEM were specialized to this case the corresponding

assumotions would be that

, G 6(y)do, (3.15)
F y

for the Dirichlet problem and

v+ f G+ (y)doy (3.16)

for the Neumann problem. The corresponding integral

equation would be, respectively,

6 x) + 2 f IG+ 6 (y)day =-2 e - ikx (3.17)
Sy y

- 2 f - G+p(y)duy 2 a e (3.18)
F x x

Since as shown in Kupradze [11] these representations do not

provide a unique solution to the corresponding boundary value

problem for the reduce I wave2 equation, the non-trivial solutions

- 25-



at {k n } of the homogeneous equation are not in 1-1 correspondence

with the poles of scattering matrix. The scattering matrix has

no poles in the upper half-plane including the real axis and

thus does not contain the kn corresponding to interior

resonances. Nor do these occur in the expression for the

scattered field. A direct proof of this last fact for the

Dirichlet problem can be found in Dolph [9]. The complex kn

as may be seen by direct computation, to correspond to outgoing

solutions of the reduced wave equation are complex eigen-

values of the exterior scattering problem and consequently

correspond to poles of the s-matrix. These are method independent

and intrinsic to the scattering body in contrast to the interior

resonances which arise only because of the method.

Because these presentations fail to furnish a 1-1 map, it is

also conce'.-ile that there may be other poles of the scattering

matrix not given by solutions of the homogeneous integral equations

used in SE4. There are no known examples in which this occurs,

but the problem must be considered open..

More explicitly the complex poles of the scattering matrix

are in 1-1 correspondence with the solutions of the boundary

value problem

2-
(A + kn )w n(rk n 0, r e Q

(3.19)

YW (r 0 ,k) 0 , r 0 e r

The complex poles kn , n 1,2,3,...
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k= (k 0 )n -i k' ' k' > 0

n kn

0 > Im (k I ) > Im(k 2 ) > Im(k 3 ) > ...

lead to the representation of the solution of (3.1) in the

form

0 -ik t
e(r,t) Y' w (r). (3.20)

n=l

While the functions w n() grow exponentially, in odd dimensions

the causality implies that solution are zero for time t < r

c being the speed of the wave propagation; after this time,

the solution decays in time.

Lax-Phillips [13] proved that, under the Dirichlet boundary

condition for n = 3 , the scattering operator uniquely determines

the scatterer. There are few theorems about the locations of the

complex poles of the scattering except for those located on the

negative imaginary axis (in the SEM, on the negative real axis)

of the complex wave-number plane. Thus, Lax-Phillips showed

that, under Dirichlet, or Neumann boundary condition in 3-dimension,

if a = Im(k) , Re(k) = 0 and if the scatterer contains a sphere

of radius R1 , and is contained in a sphere of radius R2

then the number of poles N(a) is

lim inf N(o) > RlI) 2C CO 0 2  >-- 2Y 0

while, if the scatterer is star-shaped,
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lir sup N(o) 1 R 2 2
a -> O2 2 (y0 2

0 = 0.66272

J. Beale [6] extended the above results to all n , i.e.,

n 2,3 , including the case of Robin condition. In particular, for i

he showed that the scattering matrix has at most a finite number

of poles on the purely imaginary (purely real) axis when a

Fourier (Laplace)transformation is used. Furthermore, for n = 2 ,

if the boundary condition is either Dirichlet, or Neumann, then

there are no poles on the axis. The poles on the axis are, of

course, purely decaying modes. The complex poles of the scattering

matrix which are also the complex eigbnvalues of -L in an

exterior homogeneous boundary value problem for the Helmholtz

equation are associated with the physical nature of the scattering.

Finally, we will quote an example due to Shenk-Thoe (273

to show that the comolex poles of the scattering matrix are

precisely those exhibited in the separation of variable solution.
Le n- I  En

Let S , n 2,3 , denote the unit ball in E. Then,

decomoose L2 (Sn-l) into finite dimensional subspaces HX of

spherical harmonic of degree Z . Each of these spaces is an

eigenspace of the operator S(k), the scattering matrix, and its

eigenvalue is

if() (ka) -
'P-' p-2 k > 0

H() (ka)
-p+2
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where a denotes the radius of sphere, or circle. The

fact that the numerator and the denominator of the eigenvalue

of S(k) above are complex conjugate of each other exhibits

the unitarity of S(k) for k > 0 . The poles of S(k)

are the roots of which occur when k is complex

In particular, for n = 2 , consider an arbitrary continuous

function on the circle of radius a . Expanding it in Fourier

series , one obtains

in 0  C Hn  (ka) in 0
S(k)( ane -- an (1) (3.21)

- H (ka)
n

where (a, 0 ) denotes a point on the circle. If k is

complex , S(k) has complex poles in the lower half-plane

of the complex wavenumber plane.

Since the complex singularities determined by integral

equations depend only upon the homogeneous integral equation,

it suffices to consider the simple boundary value problem

2 5-(A+ k )u (r) 0 , r e Q . (3.22)

- -ikacos% 0

U(r 0  - r 0  r

and

limr /F - ik)us (r) = 0
r ar

This has the known separation of variable solution given by

(r - J (ka) (1) in (3.23)

u (r) ( (i)n (1) In (kr)e-O H ni (ka)
n
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This solution exhibits the same complex singularities as the

scattering matrix. The Brakhage-Werner representation (7]

us(r) = -i- f (kn') i-) H( (kR)a, ')d' . (3.24)
0

leads to the integral equation:

a +2 i2T) H I ) (kR0 )p dp (3.25)(a 0) 4 f (a(ka) 2T H0 0

-ika cos@ 0-- -2 e

The unique solution of this integral equation is

in o0

2 n-l Jn (ka) e"zka [ .(3.26)

(aO i (ka) [Jn(ka) - iTJ (ka)]- tnnn

Again the complex singularities are the same as those of

the scattering matrix.

The SEM type of representation for this problem would

be

s ika 2 Z__ (1)
s( r)= -- f 21 kn)H 0  (kR) v(a,V')d'

and the corresponding integral equation would be

+ ika f2ra () v0 4 0 (ka) H0  (kR0 )v dc

-ika cos 0

with a solution given by
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i)n-ij (ka) in
2 (a 2 n 0 (3.29)

0 = ka -. J' (ka)H ( I ) (ka)n n

Here, in addition to the complex singularities given by the

scattering matrix, the zeros of J' (ka) occur atn

those values of k which correspond to the eigenvalues of the

corresponding interior homogeneous Neumann problem. They are an exampl

of the interior resonances of SEM and they do not appear in the

separated solution for the scattered wave. They are clearly

seen to be method dependent.

4. Additional Comments on the SEM

Eigenmode expansions and other spectral properties have been

employed in the development of the SEM formalism by C. Baum

[2,3,4] and T. Marin and R. Latham [18]. While these have been

used only formally, even the formal expressions are often meaning-

less. For example, the left and right eigenvalues are defined

formally by

<_ (r,r';s);Ra(r';s) > = X(s)RB(r;s)

<L (r;s);F(r,r,';s) > = X(s)LB(r;s)

where r(r,r';s) represents some intecral operator involving

a free space dydadic kernel. Then, the integral equation
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<I(r,r' ;s); JWr s)> I(r; s)

has a formal solution given by

<L (r;s); I(r';s) >
p X () <L (r;s); R (r';s)>s)
PP < :P rs) R rs> P

Since neither properties of the 'integral equation, nor

the space in which its solutions are sought are specified,

it is difficult to comment on the validity of this procedure.

If the space were a Hilbert space of square integrable functions

and the integral equation were of the first kind with a

hermitian symmetric Hilbert-Schmidt kernel then

under a strong convergence condition it is valid. (Cf.e.g.,

the discussion in Tricomi [29]).

An alternate and more promising interoretation would be

in terms of non-self adjoint operators as they are, for example,

discussed in Rarnm [21.13 . This interpretation, however,

requires a knowledge of dissipative operators and root spaces

and consequently will not be further commented upon here.

It aooears that much of the doubtful SEM formalism arises

whenever a foral iLL of a Twatrix relation is taken. While

all matrices have eigenvalues and associated invariant spaces,

this is not true of their limit, integral operators, and, even

if the integral operator does have a eigenvalues there may not

be enough to span the range of the operator. As a case in

point, the homogeneous MFIE has only one eigenvalue, namely "-l"
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but this value can arise for many different values of k-those

corresponding to both interior and exterior resonances. While

these k's corresponding to exterior resonanaces are eigenvalues

of the exterior scattering problem for the vector wave equation,

they are not eigenvalues of the MFIE.

Since there is a rapidly developing theory of equivalent

circuits based on the SEN formalism, this formalism should be

carefully evaluated and only that part of it for which a mathe-

matical basis can be furnished should be used. We hope to return

to this subject in the future.
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REVIEW

Unedited draft - The general method of eigenvibrations
7

in the theory of diffraction.(by N. Voitovic, B. Kacenelenbaum,A.Sivov
.111Spectral prop. of diffractions problems (by M.S. Agranovic

NAUK Moscow, 1977.

The problems of diffraction and scattering of electro-

magnetic or ccoustic waves have been treated at different levels

of physical evidence or intuition and of mathematical rigor. In

some engineering publications "the analysis" consisted of little

more than formal manipulation without much worry about the

spaces in which the operators act, about completeness or con-

vergence. At the other end of the scale sophisticated mathematical

theories have been developed which so far failed to permeate to

the level of physical applications. The monograph under review

is a splendid example of the intermediate "interdisciplinary

approach, attempting to open up the comnunication between the

mathematicians and practical engineers working on problems of

corrmunicatlin theory In the opinion of the reviewer

their approach appears to be the most p-omising way of overcoming

the vocabulary and traditional formailistic differences in approach

to the subject. The first part outlines some eigenvalue-eigen-

function problems of electromagnetic theory, particularly the

E-technique which has been pioneered by Voitovic, Kacenelenbaum,

and Sivov The "generalized method" consists of representing the

solutions in terms of eigenfunctions of a homogeneous problem in

which the eigenvalue is not the frequency (or a root of the fru-

quency) but some other parameter of the system, such as for example,

the dielectric constant of a reference system occupying the same

volume. It is not necessary for each term of the series to
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satisfy the boundary conditions (as is the usual practice in

applying the Rayleigh-Ritz or Galerkin procedures). Only the

whole series satisfies the imposed boundary conditions. Part two

considers the significance of the boundary conditions. The

conditions of impedence type (the w techniques), the adjoint

boundary conditions (the p-techniques), conditions given at

infinity, the metallic surface conditions are some of the topics

discussed. Chapter 3 covers the variational techniques. Using

the E-approach they considered the system

Au+k? O B V_
u.+ +- 'U - I-=0

U 6 .

Considering £ as a (fixed) constant, the authors look for the

stationary behavior of the following functional

(Vu)2 dV

S(dV+r2dV =v+v),

S u.) + 4-).
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or of

2 2 2 2 22

L(u) f (Vu) 2 dV- k 2 f_ u dV k s f+ u dV.
v v v

Alternately setting L(u) = 0. They consider the funccional

E(u) of the c-technique

(Vtt)" dV - k' IdV
V V

k2 IU 2 dV

V+

Variants of these techniques are applied to a variety of problems

in Chapter 4. Metallic tuning devices, wave guides constitute

typical examples of applications. A separate chapter,

Spectral Aroperties of Piffraction problems (123 pages plus biblio-

graphy), written by Agranovic is modestly called an appendix. It

fully deserves a separate review. It contains the introductory

definitions concerning non-selfadjoint operators in Hilbert spaces,

basis and biorthogonal systems, Sobolev spaces, and elliptic

operators. He discusses some properties of elliptic pseudodiffer-

ential operators and of elliptic boundary value problems. This

preliminary discussion leads to theorems concerning the ellipticity

of the boundary value problems in diffraction theory, and the order

of the corresponding operators and of their selfadjointness.

Problems in diffraction theory are reduced to the study of spectral

properties of certain pseudodifferential operators theorems on

disipative property of such operators are proved. The author's

s-technique is rigorously restated. Invertibility (which was
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required in certain steps of Chapter 2 is proved as a theorem.

Some properties of the s-technique are closely related to the

general techniques initiated by M.G. Krein. The appendix does

not discuss the details of the variational approach of the

authors. Further research is needed to resolve many outstanding

issues raised by the authors approach to diffraction theory.
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A CRITIQUE OF THE SINGULARITY
EXPANSION AND EIGENMODE EXPANSION METHODS

C. L. Dolph, V. Komkov and R. A. Scott
University of Michigan, Ann Arbor, Michigan 48109

SUMMARY

The authors outline some available theoretical techniques

interpreting the complex singularities of the S matrices, and

po-nt out various difficulties which so far have prevented a

formulation of a consistent and vigorous theory. Some directions

for future research are suggested. These are primarily concerned

with the z;ingularity expansion and the eigenmode expansion methods.

In particular, some recent results of the Russian school pertaining

to the theory of non-self-adjoint operators are summarized.
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A CRITIQUE OF THE SINGULARITY; EXPANSION AND EIGENMODE EXPANSION MEMODS

C. L. Dolph, V. Komkov and R. A. Scott I
University of Michigan, Ann Arbor, Michigan 48109 I

I I

INTRODUCTION .

The role of complex singularities in scattering problems is a rich and diverse one
[see Dolph and Scott (l)]. Baum (2) has been of the prime movers in the United
States of the subjects of the title. He has been helped in his efforts by the work
of Marin (3) and Tesche (4). In the Soviet Union their counterparts are Voitovi",.

Kacenelenbaum and Sivov (5). There appears, however, to be an important :difference
between the two countries in that in the USSR mathematicians, beginning with A. G.
Ramm, carefully examined the formalism of the approaches. Such efforts have
culminated in a book with an interdisciplinary spirit entitled: The Generalized
Methods of Eigen Vibrations in the Theory of Diffraction (5). The -bok, which C.s"

contains an extensive appendix by Agranovic-entitled: Spectral Properties of

Diffraction Problems, has been reviewed by the first author (with considerable help

from the second author). This review should appear shortly in Mathematical Review.s:
and an effort is underway to have the text itself translated into English. It is

fortunate that much of the pertinent Soviet work has appeared in English translatio:
in the Journal of Radio Engineering and Electron Physics. The readers attention
should be called to the two papers of Ramm [(6), (7)] and the series of papers by

Agranovic [(8), (9), (10)). All of this work was stimulated by the pioneering: pape
of Kacenelenbaum (11) and its sequel by Vo0tovi , Kacenelenbaum and Sivov (12). /

There also is an important paper by Agranovic and Golubeva (13). [A word of c;pautol
must be injected here. In a relevant paper of Golubeva (14), the word "proposition'

is translated as "conjecture," which one must admit does change the flavor. Since2
each "conjecture" is followed by a full proof, the reader must be alert to' the
,translation problems.]

SINGULARITY EXPANSION METHOD(SEM) I
I / I

The Singularity Expansion Method and its relationship to the mathematical theory of
scattering has recently been analyzed by Dolph and Cho (15) and consequently no
exhaustive detail on the technique is required here. Instead, a summary of the

results of that work will be given.

The Singularity Expansion Method is a generalization of well-known techniques of
linear circuit theory in which the singularities of a transfer function are used
to determine the transient response by the Heaviside expansion theorem. In electro

magnetic theory, the singularities are found by first applying a two-sided Laplace

transform, parameter s, to the Maxwell equations and then constructing an integral
equation for the scattered field. Complex singularities (sn } appear as poles of

the inverse of this equation and are determined from the non-trivial solutions of

the corresponding homogeneous integral equation.

The scattering operator is a unitary operator on a Hilbert space. . Its Laplace b
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transform, the scattering matrix, is analytic in the right-hand s-plane including
the axis and is meromorphic in the left-half plane. It has poles in the left-half.
plane at those values of s for which there exist non-trivial outgoing solutions of

the reduced Maxwell's equations satisfying the boundary conditions. These discrete
values of s are complex eigenvalues of the exterior scattering problem.' Shenk and-
Thoe (16) have established a one-to-one correspondence between the poles of the
S-matrix and the poles of the integral equatien,

I I

Some of these poles occur on sheets of Riemann surfaces and serious difficulties t
arise in interpreting their meaning. This fact can be deduced from the study of
the integral equation. Only the Green's Kernel can be continued analytically into:
such "forbidden domains". 1h i,;5oSvcnIL can nct. ti
While it is difficult to relate these concepts in general since most of the work an
SEM involves a formalism in which neither!spaces nor properties of the .integral -

equation are given, this can be done for the papers of Marin (3). He uses a Hilbert
space consisting of tangential currents on the surface of a convex body to discuss,
the magnetic field integral equation. He'deduces a Fredholm integral equation of
the second kind from this and uses Carlemn's Fredholm theory for the determination
of the natural modes. The solution of the corresponding homogeneous integral
equation contains both exterior and interior resonances, the latter being purely
imaginary.

To relate the scattering matrix to the integral equation one makes use 'of its
representation as a compact Fredholm integral operator. The kernel of this opera--.

tor is a transmission coefficient arising from the asymptotic form of the scattered.
field. Since its determination involves the solution of the scattering problem,
rather than use the above representation, it is simpler to use the one-to-one
correspondence between the kernel of this representation and the solution of the
vector wave equation. It can be given in terms of a vector integral equation which
is more general than the magnetic field integral equaiion. Fredholm theory is now
used. Recall that if A is a compact operator (such Ps the above mentioned operator
defining the integral equation) then the first part of the Fredholm alternative
states that A = f has a unique solution 0 if A = 0 has only the trivial solution.
Here the first part of the Fredholm alternative yields a unique solution to the,
general equation for the right-hand s-plane including the imaginary axis. The

analytic Fredholm theorem for compact operators which is given, for example,in
Reed and Simon (17), then implies the analytic and meromorphic properties of the
scattering matrix discussed above. ,

I .1

For the magnetic field integral equation,:one must use the second part of the Fred -:
holm alternative, namely: If A = 0 has non-trivial solutions then:

(i) A = 0, A*O.= 0, where A* is the adjoint of A, have the same finite
number of solutions. / .

;i

(ii) For A = f to have a solution f, f must be orthogonal to all of the
solutions of A*p = 0.

Since the solution to A 0 can be added to then clearly the procdss is not
unique and no one-to-one map between the scattering matrix and the integral equatio.
exists for the same half-plane. The non-trivial solutions of the corresponding
homogeneous integral equation occurring for complex [sn } do, however, correspond to
poles of the scattering matrix but the interior resonances corresponding to purely

imaginary {s ) are not poles of the scattering matrix nor do they appear in the
solution for the scattered field. They are consequently method dependent. The

exterior resonance corresponding to complex {s are method independent and intrin-
sic to the scattering body.
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Since a one-to-one correspondence fails to exist, it is conceivable that there are
complex poles of the scattering matrix which are not given by the solutions of the.
homogeneous magnetic integral equation corresponding to complex {s.). No examples,

however, in which this occurs are known and thus the problem remains open.
i I

Since it is generally believed that the scattering matrix contains all "observable
information about the scattering process,! the above observations substantiate the
-laim that the complex singularities are intrinsic to the scatterer whereas those
which are purely imaginary are not.

Further difficulty arises in that most problems treated by the SEM formalism in-

vole (numerical techniques applied to matrix equations obtained from finite approx-
imations Zo LiLe intcgial equations. Hlence, ,i1L;--:z oc solutLons are not really
appropriate. Fortunately, the results can be given in terms of solutions in the
Banach space of continuous functions. In'this space the Fredholm theorem as given;
by Steinberg (18) can be used to discuss ihe magnetic field integral ejuation and
to establish the one-to-one map between the scattering matrix and the associated
set of vector integral equations. This map between the scattering matrix and the

integral equation has been carried out for convex, perfectly conducting bodies only
[see Lax and Phillips (19), Brakkage and Werner (20), and Dolph and Cho (15)].
Certain other aspects of the SEM formalism have also been investigated by Dolph and
Cho (15) and serious doubts were raised regarding those, parts of it where integral.
equations of the first kind are used. Also, there appears to be a confusion in the
SEM literature betwreen the eigenvalues of the integral equations and those of'the t
vector wave equations and a belief persists that what is true for the finite matrix
equations holds in the limit.

Though said elsewhere, it seems worth repeating that areas in which the formalism
needs further investigation include:

I. The construction of variational principles useful for providing estimates for
the location of the poles in the SEM and possibly of use in establishing their
existence for off-axis poles not covered by the known Lax-Phillips results (21) for
the scalar case and their generalization by Beale (22) for the electromagnetic case

II. An investigation of integral equations of the first kind as used in SEM and a
possible justification of their use through regularization methods, such as those
of Tihonov (23). :
III. The extensioi to the electromagnEtic case of theorems sufficient to guarantee
that all poles are simple. This should include generalizations of the theorems of"
Steinberg (18) and Howland (24). ;

IV. An investigation of the entire functions which arise, through the Mittag-
Leffler theorenI in the formalism. This should include the determination of con-
ditions under which they do not occur and their explicit form when they do occur.

V. The creation of a systematic theory of the asymptotic contribution of branch
lines. As can be seen from the discussion in Dolph-Scott (1), such a theory could

have implications in many areas.

At this point a few remarks on the T-matrix would seem to be in 'order. The T-matri
formalism for scattering has proved to be an efficient way of obtaining numerical
results in a number of complicated problems [see Bolomey and IWirgin (25)]. It was
used by 1Waterman (26) in 1969 and subsequent publications include papers by
Peterson and Str~m[(27), (28), (29)], Str1m [(30), (31), (32)] and Varatharajulu
and Pao (33). However there is a reaLivi 1ship between the T and S matrices, iamel)
T1" = S - 1, as stated in W1i and Ohmura (34), and physicists in the past have used
S in preference to T.
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Bauim (2) has advanced the idea of synthesizing transient responses by means of the'
eigenmodes of integral equations of the first kind describing the system response.
Considerable caution must be exercised in this approach however, since as Ramm [(6)
(7)) has pointed out, incorrect results can sometimes arise due to the ron-self-
adjoint property of the operators that are treated. At this point it appears
certain that the theory of non-self-adjoint operators can be used to contribute
substantially to the understanding and limitation of the tormnlism of EEM ( and
SEM). While the idea of using non-self-adjoint operator theory in -cattering
problems is not new--- it was already suggested by Dolph (35) in 1960--it d.s not
appear to have been used in connection with SEM and EEM in the English !literature.
This i- rather surprisinv since this theorv has been imployed in conneftion with
scalar diffraction problems in papers translated from the Russian and eprinted in
the journal Radio Engineering and Electron Physics beginning after the 'formalism
presented in the paper by. VoWto-v-, Kacenelenbaum and Sovov (12).I I

Khile this latter paper contained a formalism similar to EEM for both the scalar
and electromagnatic case, including dielectric problems, its subsequent interpretat
at least in translated papers knoum to the wiiters, in terms of non-self-adjoint :
operator theory have been limited to the scalar problem. In the simplest case one'
attempts to construct a formal solution to the system

2((A + k2)u = f

u 0 , on a smooth convex scatterer r,

satisfying the radiation condition as a series u u0 + ZAn Here u0 is the.C on 
x) . 0 . . . -

incident field apd fn (x)} are the elgenfunctions of a compact integral operator
A, which for in three dimensions, is given explicitly by -

r
AJ = G0 (x-Y>~n(y)dr -- n(k)*n (x) , (2)

_ _ i /
r /

where the free space Green's function G is
0,

~I k2Y IG 0 4-U lx-yl (3)

It was further assumed that the coefficients in the above expansion could be deterin
by the Fourier coefficient formula ,

'/ *

rUo)nd "1 * j

An  (4)

r.

Ramm (7) interpreted and clarified these results by using a Hlilbert space L2(0)
with the usual Hlermitian inner product

(f,g) - f(x)E(x) do (S)

r
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EXPANSION Mif1OD ....
Since G is real symmetric but complex valued, this implies that

0

(A ,Q)=(~Ap (6)

so that the operator A is non-self-adjoint.
J - • p

-Since the compact operator A is non-seif--djoint, it may have root vectors instead,
of simple eigenvectors. That is for a given X, there may exist an integer p > 1
such that (A-XI)P 0 for some , while (A-XI)~ j 0 for all q < p. (In the natrix
case this happens when non-simple elementhrv divisors occur and requires the use of
th-2 ~ Ycrdnen--l -Frm rM-her than the diagornal form in the canonical representatioi
of the matrix.) However, Ramm was able to show that while the system of root vectol
was always complete in L (r), the simple form of the coefficients given above would
only occur if the L'irface r were such that A defined over it was a normal operator,
that is AA* A*A 'this condition is necessary and sufficient for A to'be a diagonal
operator). The normality nf the operator can be tested as follows: For example,
consider the operator A: H-+-H, where

exp(ikls-Ll) r,
Af = J sx f(t)dt (7)

F.

A is normal provided the integral

sXitn [y •d , x y (8).

r r
Ft

vanishes, a condition that Ramm was able to show was true if F is a sphkere. In
complicated problems it may have to be tested by direct computation.

If the operator A is not normal considerable complexity arises in the theory and
computational schemes. The problem is that in general one fs to work in an in-

finite dimensional analog of the Jordan normal form, since A fails'to be dia-
gonalizable. The lemma of Schur [see Gohberg and Krein (36)] Istatesthat any-
completely continous operator A mapping a Hilbert H space onto itself Can be repre-
sented in a triangular form. Specifically, there exists an orthogonal basis W. of:
H such that I. 3

Aw. = : a.. . I
3 . 31 /1(9)"\ '/ I

where a.. (A(, = X (3) Idenoting inner product and A. being an eigenvalue
of A.

There are many areas which need detailed mathematical investigation. For example
Vo~toviC, Kacenelenbaum and Sivov consider several variational principles which
produce stationary solutions. These are reminisicent of those of Schwinger and
McFarlanc, the latter occuring in the problem of anomalous propagation through
the atmosphere. Attempts to make mathematical sense of these occur in Dolph (37),
Dolph and Ritt (38) and Dolph, McLaughlin and Marx (39). The max-min characterizat
of the last paper unfortunately depends upon the dimension of the approximating
space and so it badly needs reformulation. The only other pertinent work it seems
to be that of Morawetz (40) where as discussed in Dolph-Scott (1) a variational
principle is given implicitly.
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In connection with variational principles, the following facts should be mentioned,
The variational approach given in (5) has been briefly reviewed by Doiph in (41).,
Vortovic, Kacenelenbaum and Sivov introduced the s-approach by considering an
approximate scattering problem (the s-problem) and the corresponding systems of
equations .i

Au + k 2u " 0 in V+

Au + Ku = 0 in V-IC.
+

iU 0

'U 1= 0

au+  au-
- , OIs (10)

leading to a miminization of the functional

L(u) f(Vu) 2dV-k 2f u2dV - 2 f .d (11)
V V

A rigorous justification of such techniques still remains an open problem. Similar
variational principles were given by J. Schwinger and 11. Levine (42). LAlso see
Kate (43), and Dolph (37)]. As in the case discussed by Dolph and Ritt (38), or
Dolph (37), It c_:n be conjectured that the real and imaginary parts of the unknown
function near the staLicnary point lie on a saddle-like surface, but the orientation
of such a saddle is unknow.n.

49/
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ZEROS OF THE INPUT IMPEDANCE FUNCTION FOR THTN.

CYLINDRICAL AND PROLATE SPHEROIDAL ANTENNAS

C. T. TAI

1. Introduction

The input impedance function of the thin cylindrical antenna

has been studied by Hallen [1], Schelkunoff [2], King-Middleton [3],

Tai [4] and others. Althoagh the methods used by these authors are

different from each other, yet they yield the numerical results for

the input impedance in the (real-valued) frequency domain which

agree relatively closely not only with each other but also with ex-

perimental results.

The main objective of our study is to numerically compute the

distribution patterns of zeros of the input impedance functions in

the complex frequency domain of thin cylindrical and prolate spher-

oidal antennas, and study their implications. This is carried out

by the use of Schelkunoff's perturbation method [2] with a slight

modification. The Schelkunoff's method is essentially a heuristic

one and so is our present study because we adopt the method formally

without establishing a rigorous mathematical justification.

In section 2 the input impedance functions are derived for a

cylindrical antenna and a prolate spheroidal antenna and, in section

3, the nunerical results are presented for zeros of these functions

in the complex frequency plane. In section 4 we offer a concluding

f6mark on our numerical results.

2. Input Impedance

In this section we derive the input impedance functions for thin

cylindrical and prolate spheroidal antennas based on the Schelkunoff's

method. For convenience of the reader, we will show the essence of

the method in some details for the cylindrical case; for the prolate

spheroidal case, we will merely show the result since the same procedure

is used.

2.1 Cylindrical antenna

Consider a cylinder of lengtn 2Z and radius a. By regarding it

as a nonuniform transmission line with the source located at the

cerLtek of the cylinder, we define the line impedance, line admittance,
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and characteristic impedance at r, 0 4 r r., as following:

no 2r

Z(r) = jk :-- 2n(ra

Y(r) = jkr/n ° 2n(2r),
0 a

and n
K(r) = n (ar)

where T o = 120r ohms and k = wiPC _

We then define the average characteristic impedance of the non-

uniform line as

K o 1 (1)
K - 1 Zn(-- a)dr, (i)

where a is some positive real constant number yet to be determined.

Carrying out the integral, we get

no 2Z 1
K - n(---) , (2)
o 1T a

where = e/4. If we set B e, (2) reduces to the average charact-

eristic impedance defined by Schelkunoff:

no 2.
K0 ] T ae

which can be written in terms of the bicone parameter 0 = a/Z j5],

the half-angle of the bicone, as

K no 2n )K°  =e r en ( ).

This shows that the average characteristic impedance of the cylinder

corresponds to the characteristic impedance of a bicone whose half-

angle is ea0°  2.7 0 . On the physical ground, it seems more appro-

priate to have the bicone inscribed in cylinder. It is for this

reason that we introduced a new averaging procedure in the form of

(1). If B 1 is chosen, (2) becomes
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0 2Ko - i = Z (ao) (3)
0 a

Zc( 0) being the characteristic impedance of a biconical antennd
with the half-angle 6 = a/Z.0

The average line impedance, Z0 , can also be defined similarly.

Thus

no 1 £ 2r
ZO = jk q£n(- c)dr

0

= jkKo . (4)

Following Scheikunoff, we set

Y = Z /K 2 (5)

and

k = /Z Y

Note that Y is not -he average admittance in the sense of (4). We0

now denote the measure of nonuniformity of the line by

2(r) = Z(r) - Zo, (6)

0 < r <

9(r) = Y(r) - Yo" (7)

Then, we can write

r o r

2(r) = jk - - n(-), 0 < r _ Z. (8)

This "perturbation" of line impedance is awkward because it tends

to - j- as r - 0. This is a consequence of the definition of the

line impedance as given previously, and is one of the mathematical

difficulties in the Schelkunoff's method. We then assume that the

nonuniform line varies in such a way that the following restriction

holds throughout the line:

(r) _ Yo 9)

2 (r) Z0
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This condition is necessary for linearization of the theory.

By the nonuniform transmission line theory, the line voltage

and current at r, 0 < r Z 2, are given by

V(r) - V (r) (t) [jV(t)sink(r-tj
o 3

+K I(t) cosk(r-t)]dt (10)

and I(r) I (r) + 1 f2 (t)[jKoi(t)sink(r-t)

K 2
0

+V(t) cosk (r-t)]dt, (11)

where

V (r) = Vocoskr - jK I sinkr, (12)0 0 01.

v
o o K1I0(r) = 1I oSkr - j K -sinkr, (13)

0

0 = I(o), V0 = V(o).

V (r) and 10 (r) denote, respectively, the line voltage and current

of a uniform transmission line. Eqs. (10) and (11) are coupled

Volterra integral equations of the second kind for I(r) and V(r).

Since such Volterra integral equations in L2 possess unique solutions

and the operators are contractive, one can apply Piccard's iteration

to obtain a convergent solution. Thus, we formally write the solutions

of (10) and (11) as

OD

V(r) = E Vn (r) (14)
n=0

00

E(r) = Z In (r) (15)
n=0

For n = 0, V (r) and I (r) are given by (12) and (13); for n > 1,

V (r) = - ^(t) [ Vn 1 (t) sink (r-t)
o 0

+ KoIn-i (t) cos k (r-t)]dt, (16)

S(r) = (t) [jK oI n-(t)sink(r-t)
K 0 0

+4 V nl(t)cosk(r-t)Idt (17)



Unfortunately, it becomes impractical to compute the iterates be-

yond the first and this is a major difficulty of this theory. We

are then forced to accept the "approximate" solutions as

V(r) V (r) + V1 (r), (18)

(r) 0 (r) + 1 (r). (19)

Following Schelkunoff, we set the terminal impedance at r = Z as

Z(kZ) - V(k) Vo (k) + V (k)20)
I(kk) I (kZ) + I l (kM,)

We note that V1 (kZ) and 11 (kZ) in (20) are the first iterated solu-

tions of the Fredholm integral equations with r replaced by Z in (10)

and (11). As such, unlike the Volterra integral equations, we no

longer have a priori assurance of the uniqueness of the solutions,

nor of the convergence of the iterated solutions. Even if we assume

that tne iterated solutions of the forms (18) and (3.9' are acceptable

approximate solutions for k > 0, (i.e., for the real-valued frequen-

cies), i+ is possible that such an assumption may not be valid when

analytically continued in the complex frequency plane as we must even-

tually do for the computation of zeros of the input impedance function.

In spite of these unsettled mathematical questions, we formally pro-

ceed and postulate

K
2

K
Z(kZ) (kZ) (21)

where a

Za (k) = K 2Y(kZ). (22)a o

Y(kZ) [5] represents the terminal admittance of a biconical antenna

with which our cylindrical antenna is associated. The configuration

of the biconical antenna depends on the choice of the value of 6.

Evidently, the postulations (21) 'vi (221 are heuristic. Equating

(20) and (21), we can find the i impedance function of the cyl-

indrical antenna at r ?. This I. the Schelkunoff's theory of the

cylindrical antenna. Actually, Schelkunoff approximat2d (20) as
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V (kZ) + Vl(kW)
z(k) 10 (kZ)

At this point, we depart from the Schelkunoff's theory and

define a complex variable s by

s = jkZ (23)

and formally replace k in (20) and (21) by - js. After some lengthy

manipulation, we obtain the desired complex-valued input impedance

of the cylindrical antenna in s domain and write

(c) F (s)
Z. o G (s) = K c (24)

where c

c' (s) = f(s)c

S 1 se E(2s) + e-SE(-2s)]2 Q - 4kn

- y(s) [eSE(2s) - e-SE(-2s)], (25)
2Q

G (s) g(s)c

± { 4knsinh(s)2 Q-4 kn 5 -[eSE(2s) - e-sE(-2s)]

- y(s) 4 ncosh s)

I -[eSE(2s) + e-sE(-2s)] (26)

f(s) = e [1 + y(s) [1 + f(s)e-2s, (27)

es - e -2sg(s) = y(s) i (s) ] (30)

2s -2s

Y(s) en(2) e e

+-2e )(sL ( +(-2s)

e 2sE(s) (31)

- 67 -



-7-

E+ 1ts - e 2udu (32)E(±s) 1 eu

and J
= 2Zn(2-) (33)

0

The input impedance of the biconical antenna of the half-angle 8

is given by (cf[5f)

Z (b) (S) Z (0o) f(s)
in c g(s)

1 + r (s) e -2 s

- Z (6 + -2s (34)
C 0 - r(s) e

The extent of the validity of the input impedance function (24)

can be tested by the inicial- and final-value theorems. Our aralysis

shows that, with the applied unit step voltage, the final-value

theorem is satisfied but not the initial-value theorem. In fact,

we get

im sKI(s) - 1,

Isl o

which is clearly absurd. This finding cast some serious doubt about

the numerical values of the zeros of the input impedance function.*

2.2 Prolate spheroidal antenna

We now consider a thin prol:ate spheroidal antenna inscribed in

the cylinder described in section 2.1. By the same procedure, we can

obtain the formal expression for the input impedance function in s.

The result is

_(s) F (s )

tin o G (s) (35)
w;here D1 (s

D1(s)y-s+
F (s) = F (s) + -_ 2.n +  jE (s) (36)

*The approximate impedanc- function given by eq. (8) by Iallen [1]

also fails to meet the initial-value theorem.
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G (s) G (S) - jE l (s) - D ( S )  (37)s c Q - 2Zn Q 1

D1 (s) =- sinh(s)sinh(2s)-kn(2)

1 cosh(s) [e 2sE(2s) + e- 2sE(-2s)]2

1 3s -3s E

+ [e 3  E(4s) + e E(-4s)], (38)

jE 1 (s) = - cosh(s)sinh(2s).Zn(2)

_1 inh(s) [e 2sE(2s) + e- 2sE(-2s)]2

1 3SE e-3SE
+ [e E(4s) - e E(-4s)] . (39)

3. Numerical results

Ne have numerically computed zeros of the complex-valued input

impedance functions (24) and (35) in the s-plane with = 1 for

a/Z = 0.01 and 0.1, respectively and the results are shown in Figs.

1 and 2. In Fig. 1, we also show corresponding zeros of the bicon-

ical antenna For a direct comparison. As seen from this graph, the

zeros of the input impedance function for the cylindrical antenna are

only slightly displaced from those for the inscribed biconical antenna.

For the purpose of attempting to understand the implications of the

numerical results of our present study, we also include in the graph

complex-valued poles of the axial current density function on the cyl-

inder of the dimension a/Z = 0.01. The data shown in Fig. 1 are ob-

tained by Tesche [6] by means of the singularity expansion method or

the integral equation method; Fig. 1-1 shows the distribution pattern

of these complex poles. The SEM complex poles correspond to complex-

valued zeros of the input impedance function. We see from Fig. 1 that

the distrioution pattern of our results ard that of the SEM are en-

tirely different. In particular, the zeros of the input impedance based

on the Schelkunoff's theory are located only on two "layers", whereas

the Tesche's poles occur in multi-layers of similar trajectory. It

shouid be emphasized, however, that the nature of our present problem

and that of the SEM are different: our cylinder is a center-fed trans-

miuting antenna, whereas the cylinder in the SEM analysis is a scatter-
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ing body. Therefore, there is no basis to expect two sets of data

to have similar variations.

In Fig. 2, we present zeros of the input impedance function of

the prolate spheroidal antenna of the dimension a/£ = 0.1 and the

corresponding SEM results obtained by Marin(71; the distribution pat-

tern of the latter is shown in Fig. 2-1. The zeros of the input

impedance function of our prolate spheroidal antenna occur again

only on two layers, but the layers now cross each other. Such a

crossing of two layers also occur in the case of a biconical antenna

when the half angle 0 is relatively large. Again our numerical_

results and those of the SEM are widely different.

1. Conclusion

The objective of our present study was to shed some light on

the transient behaviors of thin cylindrical and prolate spheroidal

antennas by the use of the classical pole-zero method of the transfer

function. Unfortunately, however, we do not feel that we can draw

definite conclusions about the implication of the numerical results

for the zeros of the input impedances of the antennas, mainly because

we are not certain, as discussed in section 2.1, whether or not the

formal extension of Schelkunoff's theory to the complex frequency

domain is meaningful, even though Schelkunoff's theory is generally

believed to yield the input impedance function of a thin antenna

structure in the sense that the numeral results agree reasonably

well with experimental ones in the real frequency domain. Finally,

we remark that two similar sets of zeros of the input impedance func-

tion in the complex frequency domain such as those for the cylindrical

and biconical antennas in Fig. 1 do not necessarily imply that the

impedance functions in the real frequency domain are close to each

other. For example, the maxima and the minima of the real and imag-

inary parts of the input impedance of the biconical antenna and those

of the cylindrical antenna in Fig. 1 are approximately 2 to 1 in ratio.

Conversely, two input impedance functions which agree arbitrarily closel

with each other in the real frequency domain may have quite different

sets of zeros in the complex frequency domain.
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Fig. 1 Zeros of input impedance function of a i0^r
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